Ananthakumar Ayyadurai

@structural engineer

Assistant Professor
Vivekanandha College of Technology for Women

EDUCATION

Master of Engineering

RESEARCH, TEACHING, or OTHER INTERESTS

Civil and Structural Engineering, Engineering, Multidisciplinary, Building and Construction

4

Scopus Publications

Scopus Publications

  • EFFICIENT WASTEWATER TREATMENT THROUGH INTEGRATED WATER HYACINTH SYSTEMS: ADVANCES AND APPLICATIONS IN CONCRETE
    Ananthakumar Ayyadurai, M. M. Saravanan, and M. Devi

    Institute of Metals and Technology
    This research focuses on enhancing water quality for concrete construction by utilizing treated wastewater from wetlands. The study employs a dual-stage treatment process involving charcoal and aggregate layers for primary treatment, followed by water hyacinths for secondary treatment. Investigating water hyacinths’ ability to absorb nutrients and contaminants from wastewater is a unique aspect of the study, offering a potential solution for soil and water remediation. Water hyacinths, especially stems and leaves, act as natural filters, effectively indicating heavy-metal pollution in tropical regions. The primary goal is heavy-metal removal from wastewater, allowing treated-water use in concrete production at varying proportions (20 %, 40 %, 60 %, 80 %, and 100 %). Silica fume at 15 % concentration is incorporated to enhance the concrete’s durability. Concrete specimens undergo thorough preparation and mechanical property evaluations, compared to conventional M20-grade concrete. The results reveal improvements in mechanical properties, particularly with 80 % treated wastewater in the mix. The dual-stage treatment process removes heavy metals, and the inclusion of silica fume enhances the concrete’s durability and resistance.


  • Behaviour of Steel-Concrete-Steel Sandwich Beams with Novel Enhanced C-Channels
    Ananthakumar Ayyadurai, Balaji Shanmugam, and Gobinath Ravindran

    MDPI AG
    As the load increases, most composite beams generally experience failure in both shear and flexural behavior. This outcome highlights the critical challenges of achieving sufficient strength and structural integrity in such beams. The proposed study has used the cold-formed behavior of an Enhanced C-channel (EC) shear connectors and Light Weight Concrete (LWC) to examine the new Steel-Lightweight Concrete-Steel sandwich Beams (SLCSB). The ECs have provided significant shear resistance at the faceplate-LWC interfacial interface and the tension separation resistance for faceplates (cold form steel) from the LWC core. Cold Form Steel (CFS) is the most often used substitute because of its high productivity and practicality in the field. Four different composite beams are examined in the proposed research with different ECs spacing. The beams’ top and bottom face plates are covered using CFS (1.6 mm). In addition to that, two different types of shear connectors are used. Two unique longitudinal spacing of 100 mm and 150 mm are also used for one with lipped ECs and without lipped ECs. Importantly, self-tapping screws are used to secure ECs in place between the top and bottom of the face plates. The effectiveness of the composite beams with various shear connector spacing subjected to a two-point load test is assessed through a series of experiments.