Аркадий Биличенко

@kstu.kz

Department of Energy Systems
Abylkas Saginov Karaganda Technical University



              

https://researchid.co/arkan80

EDUCATION

Mining engineer - electrician, Master of electrical power engineering

RESEARCH INTERESTS

Power industry, Thermal power engineering

3

Scopus Publications

Scopus Publications

  • Physical and Mathematical Models of Quantum Dielectric Relaxation in Electrical and Optoelectric Elements Based on Hydrogen-Bonded Crystals
    Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aliya Alkina, Raushan Aimagambetova, Gabit Mukhambetov, Aleksandr Bashirov, Dmitriy Afanasyev, Arkadiy Bilichenko, Dinara Zhumagulova,et al.

    MDPI AG
    The quantum statistical properties of the proton subsystem in hydrogen-bonded crystals (HBC) are investigated. Based on the non-stationary Liouville operator equation (taking into account a number of assumptions established in the experiment), a quantum kinetic equation is constructed for the ensemble of non-interacting protons (an ideal proton gas) moving in the crystal potential image perturbed by the external electric field. The balanced density matrix for the unperturbed proton subsystem is constructed using the quantum canonical Gibbs distribution, and the non-balanced density matrix is calculated from the solutions of the nonlinear quantum kinetic equation by methods in linear approximation of perturbation theory for the blocking electrode model. Full quantum mechanical averaging of the polarization operator makes it possible to study the theoretical frequency-temperature spectra of the complex dielectric permittivity (CDP) calculated using quantum relaxation parameters that differ significantly from their semiclassical counterparts. A scheme is presented for an analytical study of the dielectric loss tangent in the region of quantum nonlinear relaxation in HBC. The results obtained in the given paper are of scientific interest in developing the theoretical foundations of proton conduction processes in energy-independent memory elements (with anomalously high residual polarization) based on thin films of ferroelectric materials in the ultralow temperature range (1–10 K). The theoretical results obtained have a direct application to the study of the tunneling mechanisms of spontaneous polarization in ferroelectric HBC with a rectangular hysteresis loop, in particular in crystals of potassium dideutrophosphate (KDP), widely used in nonlinear optics and laser technology. The quantum properties of proton relaxation in HBC can be applied in the future to the study of solid-state electrolytes with high proton conductivity for hydrogen energy, capacitor technology (superionics, varicodes), and elements of MIS and MSM structures in the development of resonant tunnel diodes for microelectronics and computer technology.

  • Theoretical Studies of Nonlinear Relaxation Electrophysical Phenomena in Dielectrics with Ionic–Molecular Chemical Bonds in a Wide Range of Fields and Temperatures
    Valeriy Kalytka, Felix Bulatbayev, Yelena Neshina, Yekaterina Bilichenko, Arkadiy Bilichenko, Aleksandr Bashirov, Yelena Sidorina, Yelena Naboko, Nurbol Malikov, and Yelena Senina

    MDPI AG
    This paper is devoted to the development of generalized (for a wide range of fields (100 kV/m–1000 MV/m) and temperatures (0–1500 K) in the radio frequency range (1 kHz–500 MHz)) methods for the theoretical investigation of the physical mechanism of nonlinear kinetic phenomena during the establishment of the relaxation polarization, due to the diffusion motion of the main charge carriers in dielectrics with ionic–molecular chemical bonds (hydrogen-bonded crystals (HBC), including layered silicates, crystalline hydrates and corundum–zirconium ceramics (CZC), etc.) in an electric field. The influence of the nonlinearities equations of the initial phenomenological model of dielectric relaxation (in HBC-proton relaxation) on the mechanism for the formation of volume–charge polarization in solid dielectrics is analyzed. The solutions for the nonlinear kinetic Fokker–Planck equation, together with the Poisson equation, for the model of blocked electrodes are built in an infinite approximation (including all orders k of smallness without dimensional parameters) of perturbation theory for an arbitrary order r of the frequency harmonic of an alternating external polarizing field. It has been established that the polarization nonlinearities in ion-molecular dielectrics, already detected at the fundamental frequency, are interpreted in the mathematical model (for the first time in this work) as interactions of the relaxation modes of the volume charge density calculated on different orders of spatial Fourier harmonics. At the fundamental frequency of the field, an analytical generalized expression is written for complex dielectric permittivity (CDP), which is expressed analytically in terms of special relaxation parameters, which are quite complex real functions in the fields of frequency and temperature. The theoretical CDP and the dielectric loss tangent spectra studied depend on the nature of the relaxation processes in the selected temperature range (Maxwell and diffusion relaxation; thermally activated and tunneling relaxation), which is relevant from the point of view of choosing exact calculation formulas when analyzing the optimal operating modes of functional elements (based on dielectrics and their composites) for circuits of instrumentation, radio engineering and power equipment in real industrial production.

  • Reducing Electrical Power Losses with the Use of Compensation Devices
    V.S. Balandin, Y.G. Neshina, and A.P. Bilichenko

    IEEE
    The article deals with studying the power supply system. At present the problem of saving energy is particularly acute. It is solved by means of reducing consumption (introducing modern energy-saving technologies) and reducing energy losses. One of the components of the electrical power loss is the presence of reactive power in the enterprise network. Reactive power is generated by electrical equipment with inductive resistance. The presence of reactive power has a negative impact on the electrical network of an industrial enterprise, namely, the networks capacity is reduced, and the load on power transformers increases. The authors propose an integrated approach to introducing compensation devices to reduce losses, provide a calculation of the compensation sets power depending on the active load of the enterprise and depending on the power factor.